Cover image for Material characterization using laser-induced breakdown spectroscopy [electronic book] / by Chet Raj Bhatt.
Material characterization using laser-induced breakdown spectroscopy [electronic book] / by Chet Raj Bhatt.
Title:
Material characterization using laser-induced breakdown spectroscopy [electronic book] / by Chet Raj Bhatt.
Publication:
Mississippi State : Mississippi State University, 2018.
Publication Date:
2018
Bibliography Note:
Includes bibliographical references.
Dissertation:
Thesis (Ph.D.) Mississippi State University. Department of Physics and Astronomy 2018.
Abstract:
Laser-induced breakdown spectroscopy (LIBS) has been established as a rapid, in situ, and real-time spectroscopic analytical technique for material characterization. It is very handy for the study of all kinds of materials irrespective of their state. After being used for a Mars mission, LIBS has gained global attention and many scientific researches are investigating its applications. The main objective of this dissertation is to study the possibility of using laser spectroscopic sensing techniques for material characterization and if possible, to develop methodologies. Studying molecular emission spectra for elemental analysis is a relatively new trend in the spectroscopic field. Molecular emission from SrCl and SrO observed in LIBS spectra were analyzed and compared with atomic emission from Sr. Calibration models were developed using both molecular bands and atomic spectral peaks. The determination of nutritional elements in crops, vegetables, and fruits is very important to evaluate their nutritional status. The LIBS technique was applied to identify the nutritional elements present in cauliflower and broccoli, and to evaluate the difference between organic and conventional vegetables in terms of nutritional elements. Principal component analysis (PCA) and one-to-one comparison using Student's t-test were employed for discrimination between organic and conventional vegetable flowers. Early iron and steel production in the state of Pennsylvania (United States) mostly utilized blast furnaces that were operated by charcoal as a primary fuel, followed by anthracite, then coke. The process left behind a by-product known as blast furnace slag. Blast furnace slag, non-metallic in nature, appears to have various industrial applications. LIBS was used for the analysis of charcoal blast furnace slags and qualitative as well as quantitative analyses were demonstrated. To evaluate the possibility of using the LIBS technique to detect and quantify rare earth elements, three consecutive studies were executed. Firstly, pure oxides of six rare earth elements were studied and then real samples directly taken from natural ores were analyzed. In the third step, two rare earth elements (Eu and Yb) in aqueous solutions were studied by underwater LIBS and the pressure effect on the plasma emission is discussed.
Content Type:
text
Carrier Type:
online resource
Local Note:
Thesis advisor: Hendrik F. Arnoldus.
Language:
English
No. of Holds: